- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Jeffries, J. R. (2)
-
Aynajian, Pegor (1)
-
Badger, J. R. (1)
-
Basak, Rourav (1)
-
Brubaker, Z. E. (1)
-
Bunge, R (1)
-
Butch, Nicholas P. (1)
-
Campbell, D. J. (1)
-
Chow, P. (1)
-
Chuang, Yi-De (1)
-
Cornett, M (1)
-
Denlinger, Jonathan D. (1)
-
El-Zanati, S (1)
-
Giannakis, Ioannis (1)
-
Harvey, J. S. (1)
-
He, Haowei (1)
-
Jeffries, J (1)
-
Kang, Chang-Jong (1)
-
Kenney-Benson, C. (1)
-
Kotliar, Gabriel (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)A long-standing conjecture by Kotzig, Ringel, and Rosa states that every tree admits a graceful labeling. That is, for any tree $$T$$ with $$n$$~edges, it is conjectured that there exists a labeling $$f\colon V(T) \to \{0,1,\ldots,n\}$$ such that the set of induced edge labels $$\bigl\{ |f(u)-f(v)| : \{u,v\}\in E(T) \bigr\}$$ is exactly $$\{1,2,\ldots,n\}$$. We extend this concept to allow for multigraphs with edge multiplicity at most~$$2$$. A \emph{2-fold graceful labeling} of a graph (or multigraph) $$G$$ with $$n$$~edges is a one-to-one function $$f\colon V(G) \to \{0,1,\ldots,n\}$$ such that the multiset of induced edge labels is comprised of two copies of each element in $$\bigl\{ 1,2,\ldots, \lfloor n/2 \rfloor \bigr\}$$ and, if $$n$$ is odd, one copy of $$\bigl\{ \lceil n/2 \rceil \bigr\}$$. When $$n$$ is even, this concept is similar to that of 2-equitable labelings which were introduced by Bloom and have been studied for several classes of graphs. We show that caterpillars, cycles of length $$n \not\equiv 1 \pmod{4}$$, and complete bipartite graphs admit 2-fold graceful labelings. We also show that under certain conditions, the join of a tree and an empty graph (i.e., a graph with vertices but no edges) is $$2$$-fold graceful.more » « less
-
Brubaker, Z. E.; Harvey, J. S.; Badger, J. R.; Ullah, R. R.; Campbell, D. J.; Xiao, Y.; Chow, P.; Kenney-Benson, C.; Smith, J. S.; Reynolds, C.; et al (, Physical Review B)
-
Miao, Lin; Basak, Rourav; Ran, Sheng; Xu, Yishuai; Kotta, Erica; He, Haowei; Denlinger, Jonathan D.; Chuang, Yi-De; Zhao, Y.; Xu, Z.; et al (, Nature Communications)
An official website of the United States government

Full Text Available